Digital FET, N-Channel

FDV303N

General Description

These N-Channel enhancement mode field effect transistors are produced using ON Semiconductor's proprietary, high cell density, DMOS technology. This very high density process is tailored to minimize on-state resistance at low gate drive conditions. This device is designed especially for application in battery circuits using either one lithium or three cadmium or NMH cells. It can be used as an inverter or for high-efficiency miniature discrete DC/DC conversion in compact portable electronic devices like cellular phones and pagers. This device has excellent on-state resistance even at gate drive voltages as low as 2.5 V.

Features

- 25 V, 0.68 A Continuous, 2 A Peak
 - $R_{DS(ON)} = 0.45 \Omega @ V_{GS} = 4.5 V$
 - $R_{DS(ON)} = 0.6 \Omega @ V_{GS} = 2.7 V$
- Very Low Level Gate Drive Requirements Allowing Direct Operation in 3 V Circuits, V_{GS(th)} < 1 V
- Gate–Source Zener for ESD Ruggedness, > 6 kV Human Body Model
- Compact Industry Standard SOT–23 Surface Mount Package
- This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant

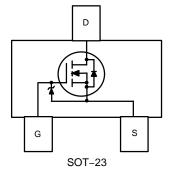
ON Semiconductor®

www.onsemi.com

SOT-23 (TO-236) CASE 318-08 STYLE 21

MARKING DIAGRAM

Aor blank = One/two character Loacation Code


303 = Specific Device Code M = Date Code

= Date Code = Pb-Free Package

(Note: Microdot may be in either location)

- * Location code can be blank or with characters indicating manufacturing location
- * Date Code orientation and overbar may vary depending upon manufacturing location.

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

FDV303N

MOSFET MAXIMUM RATINGS $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	FDV303N	Units
V_{DSS}	Drain-Source Voltage, Power Supply Voltage	25	V
V_{GSS}	Gate-Source Voltage, V _{IN}	8	V
I _D	Drain/Output Current - Continuous - Pulsed	0.68 2	А
P_{D}	Maximum Power Dissipation	0.35	W
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to 150	°C
ESD	Electrostatic Discharge Rating MIL–STD–883D Human Body Model (100 pf / 1500 Ω)	6.0	kV

THERMAL CHARACTERISTICS

I	Symbol	Parameter	Ratings	Units
	$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient	357	°C/W

ORDERING INFORMATION

Device	Package	Shipping [†]
FDV303N	SOT-23 Case 318-08	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

FDV303N

ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Conditions		Тур	Max	Units
OFF CH	ARACTERISTICS			•		•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$				V
ΔΒV _{DSS} / ΔΤ _J	Breakdown Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 25°C		26		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V			1	μΑ
		T _J = 55°C			10	μΑ
I_{GSS}	Gate – Body Leakage Current	V _{GS} = 8 V, V _{DS} = 0 V			100	nA
ON CHA	RACTERISTICS (Note 1)					
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		-2.6		mV/°C
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	0.65	0.8	1	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 4.5 V, I _D = 0.5 A		0.33	0.45	Ω
- (-)		T _J =125°C		0.52	0.8	1
		$V_{GS} = 2.7 \text{ V}, I_D = 0.2 \text{ A}$		0.44	0.6	1
I _{D(ON)}	On-State Drain Current	V _{GS} = 2.7 V, V _{DS} = 5 V	0.5			Α
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 0.5 A		1.45		S
DYNAMI	C CHARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz		50		pF
C _{oss}	Output Capacitance	7		28		pF
C _{rss}	Reverse Transfer Capacitance	7		9		pF
SWITCH	ING CHARACTERISTICS (Note 1)					
t _{D(on)}	Turn - On Delay Time	$V_{DD} = 6 \text{ V}, I_{D} = 0.5 \text{ A}, V_{GS} = 4.5 \text{ V}, R_{GEN} = 50 \Omega$		3	6	ns
t _r	Turn – On Rise Time	7		8.5	18	ns
t _{D(off)}	Turn - Off Delay Time	7		17	30	ns
t _f	Turn – Off Fall Time	7		13	25	ns
Qg	Total Gate Charge	$V_{DS} = 5 \text{ V}, I_{D} = 0.5 \text{ A}, V_{GS} = 4.5 \text{ V}$		1.64	2.3	nC
Q _{gs}	Gate-Source Charge	7		0.38		nC
Q _{gd}	Gate-Drain Charge	7		0.45		nC
DRAIN-S	SOURCE DIODE CHARACTERISTICS A	ND MAXIMUM RATINGS				
Is	Maximum Continuous Drain-Source Dic	de Forward Current			0.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 0.5 A (Note 1)		0.83	1.2	V

^{1.} Pulse Test: Pulse Width < 300 $\mu s,$ Duty Cycle < 2.0%.

FDV303N

TYPICAL CHARACTERISTICS

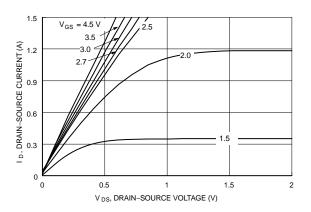


Figure 1. On-Region Characteristics

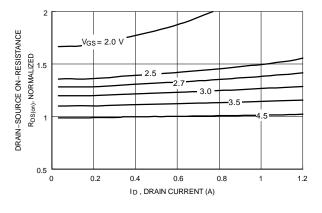


Figure 2. On–Resistance Variation with Drain Current and Gate Voltage

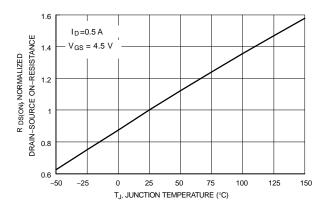


Figure 3. On–Resistance Variation with Temperature

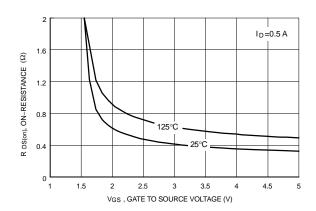


Figure 4. On Resistance Variation with Gate-To- Source Voltage

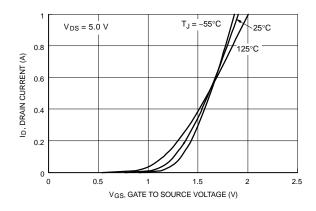


Figure 5. Transfer Characteristics

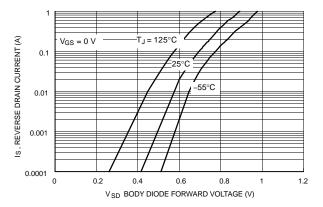


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

TYPICAL CHARACTERISTICS T_J = 25°C Unless Otherwise Noted (continued)

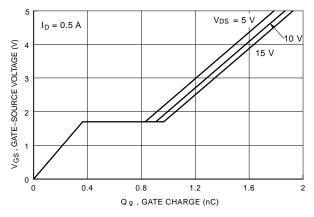


Figure 7. Gate Charge Characteristics

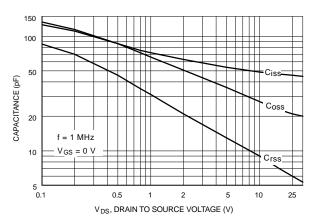


Figure 8. Capacitance Characteristics

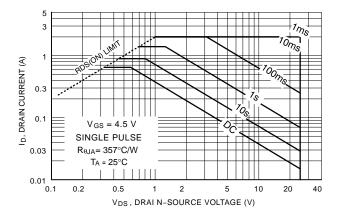


Figure 9. Maximum Safe Operating Area

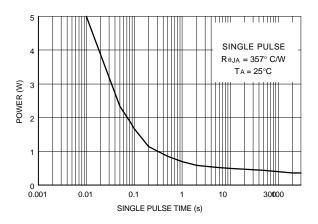


Figure 10. Single Pulse Maximum Power Dissipation

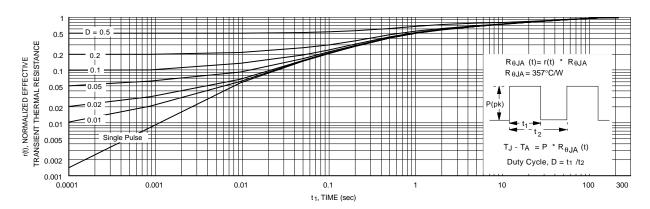
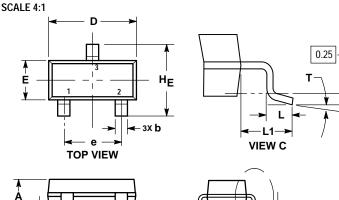
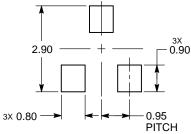



Figure 11. Transient Thermal Response Curve

SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

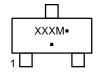
DATE 30 JAN 2018

SEE VIEW C


END VIEW

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETTES.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
- PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.039	0.044	
A1	0.01	0.06	0.10	0.000	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.017	0.020	
С	0.08	0.14	0.20	0.003	0.006	0.008	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.080	
L	0.30	0.43	0.55	0.012	0.017	0.022	
L1	0.35	0.54	0.69	0.014	0.021	0.027	
HE	2.10	2.40	2.64	0.083	0.094	0.104	
Т	0°		10°	0°		10°	


RECOMMENDED SOLDERING FOOTPRINT

SIDE VIEW

DIMENSIONS: MILLIMETERS

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR		NODE IO CONNECTION ATHODE	
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE			STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	2. ANODE 2. CA	STYLE 19: O CONNECTION PIN 1. CATHODE ATHODE 2. ANODE NODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: STYLE 24: PIN 1. ANODE PIN 1. GA 2. ANODE 2. DR 3. CATHODE 3. SO	ATE PIN 1. ANODE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE			

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees,

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FDV303N